NuSENSOR 50/125 Graded Index Pure Silica Core Multimode Fibers

Coherent's NuSENSOR pure silica core multimode fiber is immune to the damaging effects of hydrogen ingression, enabling Raman based distributed temperature sensing in harsh environments. This 0.20 NA fiber features a graded refractive index profile with a 50 µm core diameter and a 125 µm clad diameter. The fibers are available with a polyimide or midtemperature acrylate coating and also available in combination with a hermetic carbon coating. NuSENSOR multimode fiber is manufactured in-house, and every process step is monitored and controlled providing high bandwidth and low attenuation. As with all Coherent fibers, this multimode fiber provides tight tolerance optical and geometrical specifications measured at the application critical wavelengths. For high H₂ partial pressure and elevated temperature up to 300°C (150°C for MTA) you will find no measurable induced loss for typical sensing applications.

Typical Applications

- Enhanced oil recovery processes
- · Hydrothermal well temperature measurements
- · Oil reservoir optimization
- · Raman distributed temperature sensing

Features & Benefits

- Resistant to H₂ ingression Low cost, long life deployment
- Exceptional uniformity Consistent and repeatable performance
- Long unattended deployments or short cycle in-out applications
- Low loss over the wavelengths range critical to DTS
- Available with hermetic carbon coating

Optical Specifications

Operating Wavelength Core NA Bandwidth

Core Attenuation

GR-S50/125-20P

000 1000 11111
0.200
≥ 300 MHz-km @ 850 nm
≥ 300 MHz-km @ 1300 nm
≤ 1.00 dB/km @ 1300 nm
< 1.80 dR/km @ 1060 nm

 $125.0 \pm 1.0 \, \mu m$

 $50.0 \pm 2.5 \, \mu m$

 $< 1.5 \, \mu m$

≤ 5 %

≤ 1.0 %

Polyimide

Graded Index

-65 to 300 °C

≥ 100 kpsi (0.7 GN/m²)

≤ 1.50 µm

 $150.0 \pm 5.0 \, \text{um}$

GR-S50/125-20CP 850 - 1300 nm

	000 1000 1111
	0.200
0 nm	≥ 300 MHz-km @ 850 nm
00 nm	≥ 300 MHz-km @ 1300 nm
0 nm	≤ 1.00 dB/km @ 1300 nm
0 nm	≤ 1.80 dB/km @ 1060 nm
nm	≤ 2.70 dB/km @ 850 nm

GR-S50/125-20MTA

850 - 1300 nm
0.200
≥ 300 MHz-km @ 850 nm
≥ 300 MHz-km @ 1300 nm
≤ 1.00 dB/km @ 1300 nm
≤ 1.80 dB/km @ 1060 nm
≤ 2.70 dB/km @ 850 nm

GR-S50/125-20CMTA

850 - 1300 nm 0.200 ≥ 300 MHz-km @ 850 nm ≥ 300 MHz-km @ 1300 nm ≤ 1.00 dB/km @ 1300 nm ≤ 1.80 dB/km @ 1060 nm ≤ 2.70 dB/km @ 850 nm

Geometrical & Mechanical Specifications

Cladding Diameter Core Diameter Coating Diameter Coating Concentricity Core/Clad Offset Core Non-Circularity Clad Non-Circularity Core Index Profile Coating Material Operating Temperature Range Prooftest Level

850 - 1300 nm

J.Z	ĽUU				
≥	300	MHz-kr	n @	850	nm
≥	300	MHz-kr	n @	130	0 nm
≤	1.00	dB/km	@ 1	300	nm
≤	1.80	dB/km	@ 1	060	nm
≤	2.70	dB/km	@ 8	350 n	m

$125.0 \pm 1.0 \, \mu m$ $50.0 \pm 2.5 \, \mu m$ $150.0 \pm 5.0 \, \mu m$ $< 1.5 \, \mu m$ ≤ 1.50 µm ≤ 5 % ≤ 1.0 %

Graded Index

Polyimide

$125.0 \pm 1.0 \, \mu m$ $50.0 \pm 2.5 \, \mu m$ $245.0 \pm 5.0 \, \mu m$ $< 5.0 \, \mu m$ ≤ 1.50 µm ≤ 5 % ≤ 1.0 % **Graded Index**

Mid Temperature Acrylate -40 to 150 °C

≥ 100 kpsi (0.7 GN/m²)

 $125.0 \pm 1.0 \, \mu m$ $50.0 \pm 2.5 \, \mu m$ $245.0 \pm 5.0 \, \mu m$ $< 5.0 \, \mu m$ ≤ 1.50 µm ≤ 5 % ≤ 1.0 % **Graded Index**

Mid Temperature Acrylate -40 to 150 °C

≥ 100 kpsi (0.7 GN/m²)

